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The Importance of the Surface Divergence
Term in the Finite Element-Vector
Absorbing Boundary Condition Method

Vassilios N. Kanellopoulos and J. P. Webb

Abstract—The vector absorbing boundary condition (ABC) is an effec-
tive way of truncating the infinite domain of a 3-D scaitering problem,
and thereby permitting its solution with a finite element method. One of
the terms of the ABC is a surface divergence term. It is shown that due
to its presence, the normal continuity of the field must be enforced on
the surface where the ABC is applied. Numerical analysis of scattering
by a conducting sphere demonstrates that if normal continuity is not
enforced, the maximum error in the near field may more than double. A
similar error occurs if the surface divergence term is omitted from the
formulation.

1. INTRODUCTION

The advantage of partial differential equation techniques like the
finite element method (FEM) or the finite difference method (FDM)
over other methods is that they can handle highly inhomogeneous
materials and arbitrarily shaped objects without any extra effort in
the computer code regarding material interfaces. These techniques
can be used to solve open boundary vector wave problems (i.e.,
electromagnetic scattering) if proper boundary conditions are applied
on an external surface that truncates the exterior infinite volume
and completely encloses the discretized volume of interest, V.
These boundary conditions may be global or local in nature. Global
boundary conditions, like the integral equation condition (IEC) [2]
are exact, but they produce full matrices, destroying the sparsity of
the FEM or FDM. This is a disadvantage in memory efficiency and
computational costs. Local boundary conditions such as the absorbing
boundary conditions (ABC’s) lead to sparse matrices [1]. The ABC’s
are approximate, and higher order ABC's absorb better than lower
order ones.

The ABC’s can be symmetric or nonsymmetric, depending on
the type of matrix they produce. Symmetric matrices are preferred
because: a) they require considerably less computer memory (only
half of the final matrix needs to be stored) and b) the more efficient
symmetric solvers can be used for the solution of the matrix equation.
Symmetric ABC’s can also be included in variational formulations
of the finite element method (FEM).

Symmetric vector ABC’s were first developed in 1989 [3]. and
they were successfully implemented and tested in 3-D vector wave
problems [4]-[6]. It was shown that when the second order ABC
is applied on the outer spherical absorbing boundary surface (ABS),
high accuracy can be obtained (average error in the near field less
than 1%) by placing the ABS no more than 0.3 wavelengths away
from the scatterers. Recent work showed the possibility that the ABS
may not be a sphere, but a rather more conformal surface to the
scatterers [7]-[8].
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For the second order ABC, the following functional is stationary
with respect to the magnetic field

F(H") = / ((V x H*Y? — K2} dV
JV

+ / (o 4 J(r)far - (V x B2 = 3(r)(V-HI)?}dS (1)
S

where H® is the unknown scattered complex vector magnetic field,
V" is the volume of interest, S is the spherical ABS, ko = w,/éojio
is the free-space wavenumber, 4. is the radial unit vector, & = jko
and 8 = 1/(2jko + 2/7). The subscript ¢ denotes the component
tangential to the ABS.

The second order ABC implemented above is approximate, valid
for outward-propagating waves and improves at a rate of % 3],
[9]. It is characterized by three terms, the last of which is the surface
divergence term. If edge elements are used, so that only tangential
continuity but not normal continuity is imposed on the vector field
in the FE discretization [10], the first two terms can be modeled
in a straightforward manner. However, the surface divergence term
requires more continuity than edge elements provide, and if this is not
taken into account, erroneous results may occur. These are discussed
in detail in the next section. Perhaps because of the extra difficulties
caused by the surface divergence term, it has been suggested that it
should be omitted altogether. The results presented here confirm that
the divergence term, when properly implemented, can substantially
improve the accuracy of the computed field.

II. THE SURFACE DIVERGENCE TERM

In this work the covariant projection element, a type of edge
element, was used [11]. It is a curvilinear hexahedron and uses mixed
order trial functions (first and second order) for the field.

Dividing the volume of interest into 3 covariant projection
elements, using [(19) p. 501] and [(42) p. 503 in [12]], and after
some algebra, the first variation of the functional ' (1) gives

L
SO(F(H)

M
:Z/ SH® - [V x V x H® — EgH®]dV
=1 V.

N
+ Z/ SH® - {V x H® x &, + oH} + 3(r)V(V - HJ)
=1 3
+ B8(r)V x a,[a, - (V x H*)|} dS
L 1
+>°B(r) | &, {H;V-H; +sH°
k=1 C
X 4,[a, - (V x H*)]}dC
L -
+Zﬂ(7~)/ ar, - {§H:V - H; + §H*
c=1 Cec
X &[4, - (V x H*)[}dC )

where V., is the subvolume of the ith finite element, (J, is the
surface of the jth quadrilateral on the ABS, N is the total number
of curvilinear quadrilaterals the ABS is divided into, C is the kth
edge on the ABS, L is the total number of edges on the ABS, C. is
the cth common edge on the ABS (i.e., shared by two quadrilaterals),
and L. is the total number of common edges on the ABS, see Fig.
1. L. < L. The superscript ! denotes the left and the = the right
quadrilateral sharing C., see also Fig. 1. &, is the unit vector in the
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Fig. 1. The quadrilateral (); lies on the absorbing boundary surface, ABS
and is one of the six faces of the curvilinear covariant projection element that
touches the ABS. The edge C. on the ABS is shared by two quadrilaterals,
while the edge C, is not shared and it touches an electric or magnetic wall,
ar, al, ar,, al, a7, al and &7 are the unit vectors.

plane tangent to the ABS and perpendicular to C., and &%, = —47,.
At the stationary point of F', §(F) = 0 for every §H®, and we have

VXVxH -kH =0 ©)

V x H® X &, + oz(”/')HiS
FBPVA(V-H]) +V xafa - (VxHH}I=0 @

and

L 1
D8 | {an - SHIV-Hi +a - 6Hi[a - (V x HY)]}dC
k=1 Cr '

L. r
+ Z,B(r)/ (&1, - SHIV - H + a7
c=1 Ce

CSH[a, - (V x HO)}dC =0. )

Equation (3) is the governing curl-curl equation in volume V, and
in each sub-volume V. Similarly for (4) which is the second order
absorbing boundary condition applied on the ABS and consequently
on each quadrilateral @;. In (5) 4! is the unit vector in the plane
tangent to the ABS, and tangential to C., and élc = —ag, see Fig.
1. Note that H} denotes the field tangent to the spherical surface .S,
rather than the field tangent to C..

The first variation of the functional (2) will vanish .if and only if
the sum of the two line integrals on each common edge C. (5) is
zero on the ABS. Since the tangential field continuity is imposed,
al . M = —a7 - §H3, and the vanishing of the first varjation just
enforces the continuity of &, - (V x H*), which is correct. However,
normal field continuity is not imposed, and requiring that the first
variation of the functional vanishes forces V - Hf = 0 on both sides
of the line, a restriction which is in general wrong, because in the
air we have

3 8 10 2778
VoH =0V H= -5 (H) £0. ©)
To correct this, &', -§H; = —4a7,-5H has to be enforced, i.e., normal

continuity across quadrilaterals on the field components tangent to the
ABS. This imposes continuity of V - Hf which (from (6)) is correct.

Suppose now that Cr lies on a magnetic wall, ie., it is the
intersection of the ABS and a magnetic wall. It is assumed that the
ABS and the wall are perpendicular. In this case, there is only one
line integral along Cy (from the left quadrilateral) and & - §H; = 0
" is imposed explicitly because of the magnetic wall. Then (5) implies
V.-H; = 0. Since Hf and 6;‘1 = are set to zero on the magnetic wall,
it can be seen from (6) that this is correct.

Suppose now that Cj lies on an electric wall, i.e. it is the
intersection of the ABS and an electric wall. Again, there is only
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Fig. 2. A z-z cross section of the 3-D geometry. The metallic sphere of
radius R has its center at the origin O. It is completely enclosed by a
concentric sphere, the ABS, of radius 12 + D. The incident plane wave is
z-polarized and z-traveling. Due to symmetries only one-fourth of the region
was modeled with curvilinear covariant projection finite elements.

one line integral along Cj, and it is assumed that the ABS and the
wall are perpendicular. Then, in order for (5) to be satisfied, it is
necessary that V- Hj = 0 and &, - (V x H°) = 0 on Cy,. The latter
condition is equivalent to E} = 0 on Ci which is correct (due to
the electric wall). The first condition, however, imposes something
which is untrue. Thus, in order to have the right boundary conditions,
we need to explicitly impose &L, - 6H; = 0 on Cy, on magnetic walls.

The analysis for the functional for the electric field is almost
identical: it is only necessary to replace H by E and interchange
“magnetic wall” and “electric wall” in the above.

II. RESULTS

The problem of the metallic sphere scatterer in the presence of an
incident plane wave was solved numerically in order to investigate
and confirm the proposed theory. The geometry of the problem is
shown in Fig. 2. The incident plane was z-polarized and z-traveling,
and the metallic sphere had its center at (z, y, z) = (0, 0, 0). Due
to symmetries, only one quarter of the volume was modeled with
the following boundary conditions (see also Fig. 2): r = R = 0.3\
(prescribed Hj and H3), 6 = 3° and 6 = 177° (prescribed H,' and
H3) were the excitation surfaces, r = R + D the ABS, and ¢ = 0°
and ¢ = 90° were the magnetic and the electric walls, respectively.

There were twelve and six elements in the ¢ and ¢ directions,
respectively, and one element every 0.03X in the r direction, where A
is the wavelength, see Fig. 2. The size of each curvilinear element was
(r, 8, ¢) = (0.03), 14.5°, 15°). Since Hy and H; are undefined on
the z-axis, the z-axis was not modeled. :

The problem was solved in four different cases:

1) The second order ABC was used and the normal field continuity

was enforced on the ABS.

2) The second order ABC was used but the normal field continuity
was not enforced on the ABS.

3) An incomplete second order ABC was used that omitted the
surface divergence term, and the normal field continuity was
not enforced on the ABS.

4) An incomplete second order ABC was used that omitted the
surface divergence term, but the normal field continuity was
enforced on the ABS.

The results in cases 3) and 4) was almost identical, and therefore,
results for case 4) are not shown. Mathematical details on how the
normal field continuity was enforced on the ABS may be found in
[9]. The computed FE results were compared with analytical solutions
found in [13], [5]. The maximum field error shown in Fig. 3 is the -
largest value of

s s
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Fig. 3. Solution error versus r-R which is the distance from the metallic
sphere scatterer. The radius of the metallic sphere is B = 0.3), and
D = 0.3X. The stars show the error using the complete form of the second
order vector ABC and enforcing normal field continuity on the ABS. The
triangles show the error when normal continuity has not been enforced on
the ABS, and the squares show the error when in addition to the absence of
the normal continuity enforcement, the surface divergence term was absent
from the functional.

over the volume modeled, expressed as a percentage of |Hz, .1 ticall
at the point where the largest value of e occurs. Fine meshes were
used so that the discretization errors were reduced to a minimum.

Fig. 3 show the errors for the cases 1), 2), and 3), when D = 0.3X.
It is clear that in case a) the results are far more accurate than those
in cases 2) and 3). In fact, cases 2) and 3) appear to give about the
same accuracy in the computed field.

IV. CONCLUSION

Due to the presence of the surface divergence term, the proper
implementation of the second order absorbing boundary condition
requires that the two extra conditions be explicitly enforced:

1) On the ABS, normal continuity has to be imposed between the
quadrilaterals the ABS is divided into;

2) for the magnetic field case, where the ABS meets an electric
wall, the component of magnetic field normal to the wall must
be set to zero explicitly; for the electric field case, where the
ABS meets a magnetic wall, the component of electric field
normal to the wall must be set to zero explicitly.

Numerical results confirm the theory. If the second order ABC is to
be used, then the two above conditions are necessary. If they are not
imposed, then the error in the near field increases by a factor of at
least two. In addition, if these two conditions are not imposed, the
numerical results showed that the surface divergence term might as
well be dropped out from the formulation.
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Coupling of the PISCES Device Modeler
to a 3-D Maxwell FDTD Solver

Vincent A. Thomas, Michael E. Jones, and Rodney J. Mason

Abstract—We show how PISCES-like semiconductor models can be
joined non-invasively to finite difference time domain models for the
calculation of coupled external electromagnetics. The method involves
“tricking” the standard current boundary condition for the device model
into accepting an effective parallel external capacitance. For nearly steady
state device conditions we show the results for a transmission line-coupled
PISCES diode to agree well with those for an ideal diode.

I. INTRODUCTION

The FDTD method advances Maxwell’s equations in time on a
finite difference mesh [1]. It is being used increasingly to analyze
microwave circuits. Sui ef al. [2] have shown how it might be ex-
tended to systems including active elements. Also, two of us recently
demonstrated a technique [3] for robustly coupling FDTD to SPICE
[4] circuit simulators for subgrid scale modeling. The present note
extends this technique to provide coupling noninvasively of FDTD
to the PISCES [5] device modeler. We demonstrate this procedure
with application to a diode fixed to the end of a transmission line.
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