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The Importance of the Surface Divergence

Term in the Finite Element-Vector

Absorbing Boundary Condition Method

Vassilios N. Kanellopoulos and J. P. Webb

Abstract-The vector absorbing boundary condition (ABC) is an effec-

tive way of truncating the infinite domain of a 3-D scattering problem,
and thereby permitting its solution with a finite element method. One of

the terms of the ABC is a surface divergence term. It is shown that dne
to its presence, the normal continuity of the field must be enforced on
the snrface where the ABC is appfted. Numerical analysis of scattering
by a conducting sphere demonstrates that if normal continuity is not
enforced, the maximum error in the near field may more than double. A
similar error occurs if the surface divergence term is omitted from the
formulation.

I. INTRODUCTION

The advantage of partial differential equation techniques like the

finite element method (FEM) or the finite difference method (FDM)

over other methods is that they can handle highly inhomogeneous

materials and arbitrarily shaped objects without any extra effort in

the computer code regarding material interfaces. These techniques

can be used to solve open boundary vector wave problems (i.e.,

electromagnetic scattering) if proper boundary conditions are applied

on an external surface that truncates the exterior infinite volume

and completely encloses the discretized volume of interest, V.

These boundary conditions may be global or local in nature. Global

boundary conditions, like the integral equation condition (IEC) [2]

are exact, but they produce full matrices, destroying the sparsity of

the FEM or FDM. This is a disadvantage in memory efficiency and

computational costs. Local boundary conditions such as the absorbing

boundary conditions (ABC’s) lead to sparse matrices [1]. The ABC’s

are approximate, and higher order ABC’s absorb better than lower

order ones.

The ABC’s can be symmetric or nonsymmetric, depending on

the type of matrix they produce. Symmetric matrices are preferred

because: a) they require considerably less computer memory (only

half of the final matrix needs to be stored) and b) the more efficient

symmetric solvers can be used for the solution of the matrix equation.

Symmetric ABC’s can also be included in variational formulations

of the finite element method (FEM).

Symmetric vector ABC’s were first developed in 1989 [3]. and

they were successfully implemented and tested in 3-D vector wave

problems [4]–[6]. It was shown that when the second order ABC

is applied on the outer spherical absorbing boundary surface (ABS),

high accuracy can be obtained (average error in the near field less

than 1Y.) by placing the ABS no more than 0.3 wavelengths away

from the scatterers. Recent work showed the possibility that the ABS

may not be a sphere, but a rather more conformal surface to the

scatterers [7]–[8].
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For the second order ABC, the following functional is stationary

with respect to the magnetic field

F’(H’) = ~ {(’V X H’)’ – k:~s’}dt’
JI-

/
+- {oM~2 + l~(r)[a,- . (V x Efs)]’ – I)(r)(V . Hj)2}dS (1)

s

where Efs is the unknown scattered complex vector magnetic field,

t- is the volume of interest, S is the spherical ABS, lio = u-

is the free-space wavenumber, a, is the radial unit vector, a = j’ kO

and D = 1/( 2j kO + 2/r). The subscript t denotes the component

tangential to the ABS.

The second order ABC implemented above is approximate, valid

for outwarcl-propagating waves and improves at a rate of r–5 [3],

[9]. It is characterized by three terms, the last of which is the surface

divergence term. If edge elements are used, so that only tangential

continuity but not normal continuity is imposed on the vector field

in the FE discretization [10], the first two terms can be modeled

in a straightforward manner. However, the surface divergence term

requires more continuity than edge elements provide, and if this is not

taken into account, erroneous results may occur. These are discussed

in detail in the next section. Perhaps because of the extra difficulties

caused by the surface divergence term, it has been suggested that it

should be omitted altogether. The results presented here confirm that

the divergence term, when properly implemented, can substantially

improve the accuracy of the computed field.

II. THE SURFACE DIVERGENCE TERM

In this work the covariant projection element, a type of edge

element, was used [11 ]. It is a curvilinear hexahedron and uses mixed

order trial functions (first and second order) for the field.

Dividing the volume of interest into Jl covariant projection

elements, using [(19) p. 501] and [(42) p. 503 in [12]], and after

some algebra, the first variation of the functional F (1) @es

~6(F(Hs))

Ill

= ~~ 6HS ~[V X V X H’ - k; H’]dV
,=1 ~.

Iv

‘~/Qr6Hs”{VXH’

x a,. + QH: + @(r)V~(V . H?)

+8(~)V x &[& . (V x Hs)]}dS

x ii, [&. . (’V x H’)]}dC

x aT[& . (V x Hs)]}dC (2)

where T; is the subvolume of the ith finite element, Q] is the

surface of the jth quadrilateral on the ABS, N is the total number

of curvilinear quadrilaterals the ABS is divided into, L’k is the kth

edge on the ABS, L is the total number of edges on the ABS, Cc is

the cth common edge on the ABS (i.e., shared by two quadrilaterals),

and Lc is the total number of common edges on the ABS, see Fig.

1. Lc ~ L. The superscript 1 denotes the left and the r the right

quadrilateral sharing (2’., see also Fig. 1. a~, is the uuit vector in the
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Fig. 1. The quadrilateral Q ~ lies on the absorbing boundary surface, ABS
and is one of the six faces of the curvilinear covariant projection element that
touches the ABS. The edge Cc on the ABS is shared by two quadrilaterals,
while the edge C’k is not shared and it touches an electric or magnetic wall.

&, a~, a~, a:, a:, a: and a: are the unit vectors.

plane tangent to the ABS and perpendicular to Cc, and a~. = – ~m.

At the stationary point of F, 6(F) = O for every 6HS, and we have

VxVx Hs–k;Hs=O (3)

v x Hs X a, + a(r)H:

+/3(r) {Vt(V H;) +V X ar[ar . (V X H’)]} = O (4)

and

. 8H; [a, . (V X H’)]} cK.7= O. (5)

Equation (3) is the governing curl-curl equation in volume V, and

in each sub-volume Vi. Similarly for (4) which is the second order

absorbing boundary condition applied on the ABS and consequently

on each quadrilateral Q ~. In (5) a: is the unit vector in the plane

tangent to the ABS, and tangential to Cc, and a: = –a:, see Fig.

1. Note that H; denotes the field tangent to the spherical surface S,

rather than the field tangent to Cc.

The first variation of the functional (2) will vanish if and only if

the sum of the two line integrals on each common edge C. (5) is

zero on the ABS. Since the tangential field continuity is imposed,
~; . ~H: = _a; . 6Hj, and the vanishing of the first variation just

enforces the continuity of a, . (V x H’), which is correct. However,

normal field continuity is not imposed, and requiring that the first

variation of the functional vanishes forces V . H; = O on both sides

of the line, a restriction which is in general wrong, because in the

air we have

VHs=O@H; =-~#(r2H:) #O. (6)

TO correct this, AL. 6HS —t — —~a” ~JX has to be enforced, i.e., normal
continuity across quadrilaterals on the field components tangent to the

ABS. This imposes continuity of V . H: which (from (6)) is correct.

&tppOSe now that Ck lies on a magnetiC Wall, i.e., it iS the

intersection of the ABS and a magnetic wall. It is assumed that the

ABS and the wall are perpendlculm. In this case, there is only one

line integral along ck (from the left quadrilateral) and a: . 6Hj = O

is imposed explicitly because of the magnetic wall. Then (5) implies

V. H; = O. Since H: and ~ are set to zero on the magnetic wall,

it can be seen from (6) that this is correct.

Suppose now that Ck lies on an electric wall, i.e. it is the

intersection of the ABS and an electric wall. Again, there is only

metallic sphere 44

55.
&E!x

Fig. 2. A x-z cross section of the 3-D geometry. The metallic sphere of

radius R has its center at the origin O. It is completely enclosed by a

concentric sphere, the AB S, of radius R + D. The incident plane wave is
z-polarized and z-traveling. Due to symmetries only one-fourth of the region

was modeled with curvilinear covariant projection finite elements.

one line integral along Ck, and it is assumed that the ABS and the

wall are perpendicular. Then, in order for (5) to be satisfied, it is

necessary that V . H; = O and ii. o(V x H’) = O on C~. The latter

condition is equivalent to E; = O on C~ which is correct (due to

the electric wall). The first condition, however, imposes something

which is untrue. Thus, in order to have the right boundary conditions,

we need to explicitly impose a~. 6Hj = O on ck on magnetic walls.

The analysis for the functional for the electric field is almost

identical: it is only necessaty to replace Ef by E and interchange

“magnetic wall” and “electric wall” in the above.

III. f&SULTS

The problem of the metallic sphere scatterer in the presence of an

incident plane wave was solved numerically in order to investigate

and confirm the proposed theory. The geometty of the problem is

shown in Fig. 2. The incident plane was x-polarized and z-traveling,

and the metallic sphere had its center at (z, y, z) = (O, O, O). Due

to symmetries, only one quarter of the volume was modeled with

the following boundary conditions (see also Fig. 2): r = R = 0.3A

(prescribed Hi and Hi), 0 = 3° and 0 = 177° (prescribed H; and

H$) were the excitation surfaces, r = R + D the ABS, and $ = 0°

and ~ = 90° were the magnetic and the electric walls, respectively.

There were twelve and six elements in the % and r) dk-ections,

respectively, and one element every O.03A in the r direction, where A

is the wavelength, see Fig. 2. The size of each curvilinear element was

(., .9, ~) = (0.03A, 14.5°, 150). Since Ho and H+ are undefined on

the z-axis, the z-axis was not modeled.

The problem was solved in four different cases:

1)

2)

3)

4)

The second order ABC was used and the normal field continuity

was enforced on the ABS.

The second order ABC was used but the normal field continuity

was not enforced on the ABS.

An incomplete second order ABC was used that omitted the

surface divergence term, and the normal field continuity was

not enforced on the ABS.

An incomplete second order ABC was used that omitted the

surface divergence term, but the normal field continuity was

enforced on the ABS.

The results in cases 3) and 4) was almost identical, and therefore,

results for case 4) are not shown. Mathematical details on how the

normal field continuity was enforced on the ABS may be found in

[9]. The computed FE results were compared with analytical solutions

found in [13], [5]. The maximum field error shown in Fig. 3 is the

largest value of

e = lH~E~ — H&Ytical
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Fig. 3. Solution error versus r-R which is the distance from the metallic
sphere scatterer. The radms of the metallic sphere is R = O.3A, and
D = 0.3A. The stars show the error using the complete form of the second
order vector ABC and enforcing normal field contirrmty on the ABS. The
triangles show the error when normal continuity has not heen enforced on

the ABS, and the squares show the error wheu in addition to the absence of
the normal continuity enforcement, the surface divergence term was absent

from the functional.

over the volume modeled, expressed as a percentage of IH~nalytical

at the point where the largest value of e occurs. Fine meshes were

used so that the discretization errors were reduced to a minimum.

Fig. 3 show the errors for the cases 1), 2), and 3), when D = 0.3J.

It is clear that in case a) the results are far more accurate than those

in cases 2) and 3). In fact, cases 2) and 3) appear to give about the

same accuracy in the computed field.

IV. CONCLUSION

Due to the presence of the surface divergence term, the proper

implementation of the second order absorbing boundary condition

requires that the two extra conditions be explicitly enforced:

1)

2)

On the ABS, normal continuity has to be imposed between the

quadrilaterals the ABS is divided into;

for the magnetic field case, where the ABS meets an electric

wall, the component of magnetic field normal to the wall must

be set to zero explicitly; for the electric field case, where the

ABS meets a magnetic wall, the component of electric field

normal to the wall must be set to zero explicitly.

Numerical results confirm the theory. If the second order ABC is to

be used, then the two above conditions are necessary. If they are not

imposed, then the error in the near field increases by a factor of at

least two. In addition, if these two conditions are not imposed, the

numerical results showed that the surface divergence term might as

well be dropped out from the formulation.
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Coupling of the PISCES Device Modeler

to a 3-D Maxwell FDTD Solver

Vincent A. Thomas, Michael E. Jones, and Rodney J. Mason

Abstract-We show how PISCES-tike semiconductor models can be
joined non-iuvasively to finite difference time domain models for the
calculation of coupled external electromagnetic, The method involves

“tricking” the standard current boundary condition for the device model
into accepting an effective parallel external capacitance. For nearly steady

state device conditions we show the results for a transmission tine-coupled
PISCES diode to agree well with those for an ideal diode.

I. INTRODUCTION

The FDTD method advances Maxwell’s equations in time on a

finite difference mesh [1]. It is being used increasingly to analyze

microwave circuits. Sui et al. [2] have shown how it might be ex-

tended to systems including active elements. Also, two of us recently

demonstrated a technique [3] for robustly coupling FDTD to SPICE

[4] circuit simulators for subgrid scale modeling. The present note

extends this technique to provide coupling noninvasively of FDTD

to the PISCES [5] device modeler. We demonstrate this procedure

with application to a diode fixed to the end of a transmission line.
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